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Abstract—In this paper, the efficiency is calculated for power
transfer between a large resonator and a collection of small
resonant dipole receivers by means of either electric or magnetic
dipole coupling. The efficiency is found to be a function of
certain geometric quantities. These quantities may be used to
characterize the effectiveness of various structures and materials
for the purpose of wireless power transfer.

Index Terms—efficiency, geometry, resonant

I. POWER TRANSFER TO A RESONANT DIPOLE

Consider a charge and current distribution that oscillates
periodically in time, with period, T = 2π/ω. Let it be assumed
that the charge and current distribution is compact, and is
embedded in an ambient electric field, ~E(x, t), and an ambient
magnetic field, ~B(x, t). Let it further be assumed that both
fields oscillate periodically with the same period, T , and that
the ambient fields may be treated as approximately uniform
over the characteristic length scale of the charge and current
distribution. Let ~E(t) and ~B(t) represent the values of the
ambient electric and magnetic fields evaluated at the central
position of the charge and current distribution. The total work,
W , done on the charge and current distribution by the ambient
fields during one period is:

W =

∫ T

0

dt
(
~E(t) · ~̇p(t) + ~B(t) · ~̇m(t)

)
(1)

where ~p(t) and ~m(t) are the instantaneous electric and mag-
netic dipole moments of the charge and current distribution.

If the oscillations are sinusoidal, the average power trans-
ferred to the charge and current distribution can be written in
terms of products of vectors with complex phasor amplitudes:

Ptrans = 1
2ω<

[
j ~B∗ · ~m

]
+ 1

2ω<
[
j ~E∗ · ~m

]
(2)

It is clear that the transferred power is maximized when the
amplitudes of ~m and ~p are maximized and shifted in phase
from ~B and ~E by −90◦. These conditions occur when a dipole
has a resonance at the driving frequency. At resonance, the
transferred power is:

Ptrans = 1
2ω| ~B||~m|αm + 1

2ω| ~E||~p|αp (3)

where αm and αp are dimensionless alignment factors, given
by:

αm ≡ |cosθm| (4)
αp ≡ |cosθp| (5)

and where θm is the angle between the magnetic field vector
and the magnetic dipole moment vector, and θp is the angle
between the electric field vector and the electric dipole mo-
ment vector.

II. QUALITY FACTORS AND DISSIPATION

Let it be assumed that both the source and the receiver
consist of structures which resonate at the same frequency,
and that the source is being driven at its resonant frequency.
The dipole receiver will oscillate in response to the mutual
coupling between it and the source. Let Pdiss-s and Pdiss-r denote
the power dissipated through undesired loss mechanisms in the
source and receiver resonators respectively. The quality factors
of the resonators are defined by the relations:

Qs ≡ ωEs
Pdiss-s

Qr ≡ ωEr
Pdiss-r

(6)

where ω is the angular frequency of the oscillation, and Es
and Er denote the stored energies in the source and receiver
resonators, respectively.

In addition to the undesired dissipation, let it also be
assumed that some power from the receiver resonator, Pload,
is delivered to a load. This load will have an effective quality
factor, Qeff, given by:

Qeff ≡
ωEr
Pload

(7)

and the dipole resonator will have an loaded quality factor,
QL, given by:

1

QL
=

1

Qr
+

1

Qeff
(8)

III. DEFINITION OF DIPOLE VOLUME

Because the dipole moment of the receiver is linearly
proportional to its amplitude of oscillation, while its stored
energy is proportional to the square of this amplitude, a
constant may be defined by taking the ratio of the square of the
dipole moment to the stored energy. In the case of a magnetic
dipole, this constant is defined to be:

υ ≡ µ|~m|2

Er
(9)

while in the case of an electric dipole, it is defined to be:

υ ≡ |~p|
2

εEr
(10)



where µ and ε are the permeability and the permittivity of the
medium surrounding the dipoles. The constant, υ, has units of
volume, and characterizes the strength of the dipole moment
created by the dipole resonator per unit of stored energy. Let
this quantity be called the dipole volume.

It can be proven that the theoretical maximum dipole
volume, υmax, is 9Ve, where Ve is the volume of the smallest
sphere which can completely enclose the resonator. (See Ap-
pendix D.) This theoretical upper bound allows an additional
quantity, called the geometric efficiency to be defined:

ηg ≡
υ

υmax
(11)

IV. POWER DENSITY, CAPTURE VOLUME, AND POWER
TRANSFER

The energy density, u, stored in the field of the source
resonator is given by,

u =
1

2µ
| ~B|2 (12)

if it is a magnetic resonator, and by,

u =
1

2
ε| ~E|2 (13)

if it is an electric resonator. For either type of resonator, we
may define the normalized energy density field, ρ, to be:

ρ ≡ u

Es
(14)

If the resonator is purely electromagnetic, i.e. all of its energy
is stored in the electromagnetic field in the space surrounding
the resonator, then ρ has the property:∫

dV ρ = 1 (15)

If we substitute these newly-defined quantities back into
Equation 3, we get the following equation for the transferred
power:

Ptrans =

√
2

2
ωα
√

EsEr
√
υρ (16)

which is true either for entirely electric coupling or for entirely
magnetic coupling.

Let the dimensionless coupling coefficient, κ, be defined as:

κ ≡ Ptrans

ω
√

EsEr
(17)

In terms of υ and ρ, κ is found to be:

κ =

√
2

2
α
√
υρ (18)

Using the conservation of energy, and the assumption of
steady state power transfer, the response of the resonant dipole
to the ambient field may be calculated:

Ptrans = κω
√

EsEr = Pdiss-r + Pload =
ωEr
QL√

Er
Es

= κQL (19)

Let us define the receiver efficiency, ηr, to be the fraction
of the transferred power which is delivered to the load:

ηr ≡
Pload

Ptrans
=

ωEr

Qeff

ωEr

QL

=

1
QL
− 1

Qr

1
QL

(20)

From this definition, we get the following relation between
Qr, QL, and ηr:

QL = (1− ηr)Qr (21)

From Equations 19, 20, and 21, the power delivered to the
load may be calculated as follows:

Pload = ηrPtrans = ηrω
1

QL
Er = ηrωκ

2QLEs

= ηr(1− ηr)Qrω 1
2α

2υρEs

= (4ηr(1− ηr)) (υ Qr)
(
1
8ωu

)
α2

= (4ηr(1− ηr)) Υ pα2 (22)

Note that the power delivered to the load may be written
as a product of four terms. The first term, 4ηr(1 − ηr), is
a dimensionless scaling factor which depends only on load
efficiency. This scaling factor is plotted in Figure 1.

P l
oa

d 
/ P

m
ax

1

0.75

0.5

0.25

0

ηr

0 0.25 0.5 0.75 1

Fig. 1. Ratio between the power transferred to the load and the maximum
receivable power as a function of receiver efficiency, ηr , for α = 1.

The second term, Υ, is defined to be:

Υ ≡ Qrυ (23)

which is the product of the quality factor of the dipole
resonator and its dipole volume. Since Υ has units of volume,
let it be called the capture volume of the dipole receiver.

The third term, p, may be defined to be:

p ≡ 1
8ωu (24)

Since p has units of power per unit volume, let it be called
the power density of the ambient field.

The fourth term, α2, is simply the square of the dimension-
less alignment factor.

The maximum power, Pmax, which may be delivered to the
load occurs at ηr = 1/2 and α = 1, and is given by the product
of the capture volume, Υ, and the local power density, p:

Pmax = Υ p (25)



V. OPTIMAL EFFICIENCY FOR MULTIPLE RECEIVERS

Extending the treatment in [1] and [2], the optimal efficiency
of power transfer may be calculated as follows. Assume the
system contains N resonant dipole receivers which couple to
the source resonator, but are sufficiently separated from each
other that the coupling between receivers is negligible.1 Let
κi denote the coupling coefficient, Qi denote the unloaded
quality factor, and Ei denote the stored energy of the ith
resonant dipole. The total power dissipated in the system
through undesired loss mechanisms, Pdiss-total, is:

Pdiss-total = Pdiss-s +

N∑
i=1

Pdiss-ri =
ωEs
Qs

+

N∑
i=1

ωEi
Qi

(26)

and the total power delivered to all of the loads is:

Pload-total =

N∑
i=1

Ploadi =

N∑
i=1

ωEi
Qeffi

(27)

Define the incremental strong-coupling parameter, γi, to be:

γi ≡ κ2iQsQi (28)

In terms of these dimensionless parameters, the efficiency of
power transfer, η, may be written as:

η =
Pload-total

Pload-total + Pdiss-total
=

∑
i γiηi(1− ηi)

1 +
∑
i γi(1− ηi)

(29)

where ηi is the efficiency of the ith receiver, as defined in
Equation 20.
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Fig. 2. Optimal system efficiency, η(opt), and optimal receiver efficiency,
η

(opt)
r , as a function of the strong-coupling parameter, g.

The receiver efficiencies, ηi, may be freely chosen by
varying the manner in which the loads couple to the resonant

1The coupling between resonators is negligible as long as each resonator
lies far outside the spheres of influence of all the other resonators. See
Appendix A for the definition of the size of the sphere of influence of a
dipole resonator.

receivers. Therefore, in order to optimize the power transfer,
we wish to find the values of ηi which maximize η. If we
differentiate ln η with respect to ηj , we get:

∂

∂ηj
ln η =

γj(1− 2ηj)∑
i γiηi(1− ηi)

− γj
1 +

∑
i γi(1− ηi)

= γj
(1− 2ηj)S2 + S1

S1S2
(30)

where the sums, S1 and S2, are defined to be:

S1 ≡
N∑
i=1

γiηi(1− ηi) (31)

S2 ≡ 1 +

N∑
i=1

γi(1− ηi) (32)

To extremize η, we wish to find a set of values for ηj such
that the right-hand side of Equation 30 is zero for every value
of j:

(1− 2ηj)S2 + S1 = 0 (33)

Note that because S1 and S2 are independent of j, all values
of ηj must be equal to a constant that is independent of j.
Define ηr to be this constant:

ηj = ηr (34)

Equation 34 allows us to simplify the sums in Equations 31
and 32:

S1 = g ηr(1− ηr) (35)
S2 = 1 + g (1− ηr) (36)

where the quantity, g, is called the strong-coupling parameter,
and is defined to be:

g ≡
∑
i

γi =
∑
i

κ2iQsQi (37)

Equations 35 and 36 may be substituted into Equation 33 ,
which yields a quadratic with two solutions for ηr:

η±r =
(1 + g)±

√
1 + g

g
(38)

The (+) solution is always greater than one, and the (-)
solution is always less than one but greater than zero. Because
0 < ηr < 1, the only valid solution for the optimum receiver
efficiency, η(opt)

r , is:

ηj = η(opt)
r = η−r =

(1 + g)−
√

1 + g

g
=

√
1 + g

1 +
√

1 + g
(39)

We may plug Equations 37 and 39 into Equation 29 to find
the optimal system efficiency, η(opt):

η(opt) =

√
1 + g − 1√
1 + g + 1

(40)

Note that there exists a simple relation between the optimal
receiver efficiency, η(opt)

r , and the optimal system efficiency,
η(opt):

η(opt)
r =

1 + η(opt)

2
(41)

The relation between η(opt) and g is plotted in Figure 2. Note
that η(opt) = 1/2 and η(opt)

r = 3/4 when g = 8.



VI. THE DIPOLE VOLUME OF A CIRCULAR LOOP
RECEIVER

Consider a resonant magnetic dipole receiver consisting of
N circular turns of wire. Let D denote the diameter of the
loop, and let it be assumed that the wire has a circular cross-
section with diameter d. The inductance of the loop is: [3]

L = µN2D

2

(
ln

(
8D

d

)
− 2

)
(42)

which is valid for D � d. Suppose the loop carries a current,
I . The magnetic dipole moment of the loop is:

m = π

(
D

2

)2

NI (43)

The dipole volume of the loop is:

υ =
µm2

E
=

µm2

1
2LI

2
=

π2D3

4(ln (8D/d)− 2)
(44)

Note that the dipole volume is independent of the number of
turns, N .

VII. EFFECTIVE SOURCE RESONATOR VOLUME AND
RECEIVER SPACE-FILLING EFFICIENCY

Consider a resonator which fills a certain volume of space,
Vp, with a power density, p. Dipole receivers are free to move
about this space and receive power. Let ρmin be the minimum
of the normalized energy density experienced by any receiver
within the pre-defined volume. The source volume, Vs, may
be defined to be:

Vs ≡
1

ρmin
= vdVp (45)

where vd is a dimensionless factor called the dilution factor.
Because ρminVp ≤ 1, this implies vd = Vs/Vp ≥ 1.

If the field is approximately uniform in the region of interest,
ρ may be approximated as a constant:

ρ ≈ 1

Vs
(46)

The incremental strong-coupling parameter, γi, for the ith
receiver, is:

γi =
1

2
α2
i υiρiQsQi ≈

1

2
α2
iΥi

Qs
Vs

(47)

The strong-coupling parameter, g, is therefore given by:

g =

N∑
i=1

γi ≈
1

2
Qs

∑N
i=1 α

2
iΥi

Vs
(48)

Define the quantity, Vc, to be the total capture volume of all
of the receivers, weighted by the square of each receiver’s
alignment factor:

Vc ≡
N∑
i=1

α2
iΥi (49)

The strong-coupling parameter can therefore be written as a
function of the space-filling efficiency of the capture volumes
of the receivers:

g ≈ 1

2
Qs
Vc
Vs

=
Qs
2vd

Vc
Vp

(50)

VIII. IDLING POWER

Due to dissipation in the source resonator, as well as
other loss mechanisms, the source resonator will require a
certain amount of power, Pidle, to maintain its field even in
the absence of any receivers. The dissipation in the source
resonator provides a lower bound to this idling power:

Pidle > Pdiss-s =
ωEs
Qs

(51)

Define pmin = ω umin/8 to be the minimum power density
within the pre-defined volume. The lower bound on idling
power may be written as:

Pidle >
ω

Qs

umin

ρmin
=

8

Qs
pminVs =

8vd
Qs

pminVp (52)

Therefore, the lower bound on the idling power is proportional
to the power density multiplied by the volume of the region
being powered, and inversely proportional to the quality factor
of the source resonator.

IX. SUMMARY OF QUANTITIES

The most important quantities derived and defined in the
previous sections are summarized in the table below.

Symbol Name Definition
α alignment factor | cos θ|

υ dipole volume µ|~m|2
Er

or |~p|
2

εEr

υmax dipole volume upper bound 9Ve
ηg geometric efficiency υ/υmax

Υ capture volume Qr υ

u energy density | ~B|2
2µ or 1

2ε| ~E|
2

p power density 1
8ωu

ρ normalized energy density u
Es

ηr receiver efficiency Pload/Ptrans

Vi volume of influence 1
3 (1− ηr)αΥ

Pmax maximum receivable power Υp

Pload load power 4ηr(1−ηr)α2Pmax

γi
incremental
strong-coupling parameter

1
2α

2
iΥiρiQs

g strong-coupling parameter
∑N
i=1 γi

η(opt) optimal system efficiency
√
1+g−1√
1+g+1

η(opt)
r optimal receiver efficiency 1+η(opt)

2

Vc total capture volume
∑N
i=1 α

2
iΥi

Vs source volume 1
ρmin

vd dilution factor Vs/Vp

Pidle idling power (lower bound) 8vd
Qs
pminVp
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APPENDIX

A. The Sphere of Influence of a Resonant Dipole Receiver

A resonant dipole receiver creates its own electric or mag-
netic field proportional to its dipole moment. At a given
distance, the field is strongest along the axis of the dipole
moment vector, and is given by:

| ~Bd(r)| =
µ

2π

|~m|
r3

(53)

for a magnetic dipole and by:

| ~Ed(r)| =
1

2πε

|~p|
r3

(54)

for an electric dipole, where r is the distance from the center
of the dipole.

The radius of influence can be defined as the radius, ri, at
which the strength of the self-field of the dipole is equal to
the strength of the ambient field:

| ~Bd(ri)| = | ~B| or | ~Ed(ri)| = | ~E| (55)

From Equations 9, 12, 53, and 55:

| ~Bd(ri)|2

| ~B|2
=

1

2(2π)2r6i

2µ

| ~B|2
µ|~m|2 =

1

8π2r6i

Erυ

u
= 1 (56)

From Equations 10, 13, 54, and 55:

| ~Ed(ri)|2

| ~E|2
=

1

2(2π)2r6i

2

ε| ~E|2
|~p|2

ε
=

1

8π2r6i

Erυ

u
= 1 (57)

From Equations 14, 18, 19, 21, and 23:

Er = κ2Q2
LEs =

1

2
α2υ Q2

r(1− ηr)2ρEs

=
1

2
α2 Υ2

υ
(1− ηr)2u (58)

Which implies:

Erυ

u
=

1

2
α2Υ2(1− ηr)2 (59)

Therefore, for both electric and magnetic dipoles, the radius
of influence is defined by the relation:

α2Υ2(1− ηr)2

16π2r6i
= 1 =⇒ αΥ(1− ηr)

4πr3i
= 1 (60)

Define the sphere of influence to be the sphere of radius ri
centered on the dipole. The volume of the sphere of influence,
Vi, is given by:

Vi =
4π

3
r3i =

1

3
(1− ηr)αΥ (61)

The receiver power is maximized at α = 1, and ηr = 1/2,
in which case Vi = 1/6Υ. The maximum volume of influence
occurs when the receiver is unloaded and α = 1, in which
case ηr = 0, and Vi = 1/3Υ.

If a dipole resonator is placed within the sphere of influence
of a second dipole resonator, then it is possible for the local
field experienced by the first resonator to be dominated by the
dipole field of the second resonator rather than the ambient
field. Therefore, in order to ensure that interactions between
resonators are negligible, each resonator must lie far outside
the spheres of influence of all of the other resonators.

B. Upper Bound on Capture Volume
Consider a dipole resonator oscillating at angular frequency,

ω. The oscillation causes the dipole resonator to produce far-
field dipole radiation. If the dipole is magnetic, the radiated
power is:

Prad =
ζ

12π

(ω
c

)4
|~m|2 =

ζ

12π

(ω
c

)4 υEr
µ

=
c

12π

(ω
c

)4
υEr (62)

where ζ =
√
µ/ε is the impedance of the surrounding

medium, and c = 1/
√
εµ is the speed of light in the

surrounding medium. If the dipole is electric, the radiated
power is:

Prad =
c2ζ

12π

(ω
c

)4
|~p|2 =

c2ζ

12π

(ω
c

)4
υεEr

=
c

12π

(ω
c

)4
υEr (63)

The quality factor due to radiation, Qrad, is therefore given by:

Qrad ≡
ωEr
Prad

=
12π

(ω/c)3υ
=

3

2π2

λ3

υ
(64)

where λ is the wavelength of a plane wave with angular
frequency ω.

Let Qother represent the quality factor due to all other loss
mechanisms. The overall quality factor, Qr, of the resonator
is therefore given by:

1

Qr
=

1

Qrad
+

1

Qother
>

1

Qrad
(65)

which implies that:
Qr < Qrad (66)

This gives the following upper bound on the capture volume:

Υ = υQr < υQrad =
3

2π
λ3 (67)

Therefore, the maximum possible capture volume of any
dipole resonator, Υmax, is given by:

Υmax =
3

2π
λ3 (68)



C. Antenna Efficiency of an Electrically Small Dipole Antenna
Although it is not directly relevant to near-field wireless

power transfer, the quantities derived in the previous section
are useful for characterizing the effectiveness of a small dipole
resonator as an antenna for either receiving or transmitting
radiation, such as the piezoelectric antenna described in [4].

If power is injected into the dipole resonator, some fraction
will go to heat, and some fraction will go to far-field radiation:

Pin = Prad + Pheat (69)

The antenna efficiency, ηa, of the dipole resonator is defined
to be:

ηa ≡
Prad

Pin
=

Prad

Prad + Pheat
=

ωEr

Qrad

ωEr

Qr

=
Qr
Qrad

=
υQr
υQrad

(70)

Therefore, the antenna efficiency is given by the ratio of
the capture volume of the resonator, Υ, to the theoretical
maximum capture volume, Υmax:

ηa =
Υ

Υmax
(71)

D. Absolute Upper Bound on Dipole Volume
Consider a resonator containing a compact charge and

current distribution which is fully enclosed within a sphere
of radius, R, and volume, Ve = 4πR3/3. Let it be assumed
that the medium outside the sphere has uniform permeability,
µ, and permittivity, ε.

The energy of the resonator, E , will have contributions from
both the interior and exterior of the sphere:

E = Eint + Eext (72)

The exterior energy will be given by the integral of the energy
density, u, over the space outside the sphere:

Eext =

∫
r>R

u dV (73)

where r is the distance from the origin. The electric and
magnetic fields outside of the sphere may be written as a sum
of multipole fields. Because the multipole fields are orthogonal
functions, their contributions to the integral are all independent
and non-negative. This implies that the energy contribution
from the dipole field by itself must give a lower bound on
the energy of the exterior, which gives a lower bound on
the energy of the resonator. The integrated energy, Em, of a
magnetic dipole field over the region r > R is:

Em =
µ|~m|2

9Ve
(74)

and the integrated energy, Ep, of an electric dipole field over
the region r > R is:

Ep =
|~p|2

9εVe
(75)

This gives the following upper bound for the dipole volumes
of magnetic and electric dipole resonators:

υm =
µ|~m|2

E
≤ µ|~m|2

Eext
≤ µ|~m|2

Em
= 9Ve (76)

υp =
|~p|2

εE
≤ |~p|

2

εEext
≤ |~p|

2

εEp
= 9Ve (77)

Therefore, in general, the following upper bound must hold
for the dipole volume of any type of resonator:

υ ≤ 9Ve (78)

where Ve is the volume of the smallest sphere which com-
pletely encloses the resonator.

E. Dipole Volume of a Uniformly Magnetized Sphere

Suppose that a sphere of volume, Ve, is filled with a
permeable material, with relative permeability, µr, which is
uniformly magnetized by means of a surface current. Accord-
ing to Jackson [5], the magnetic field is uniform inside the
sphere, and takes the form of a pure dipole field outside the
sphere. Adding the energy contributions from the interior and
exterior gives the following dipole volume:

υm =
µ|~m|2

Eint + Eext
=

9

1 + 2/µr
Ve (79)

Note that as µr → ∞, the dipole volume of the magnetic
resonator approaches the upper bound given by Condition 78.

F. Stricter Upper Bounds on Dipole Volume Assuming a
Homogeneous Medium

Consider the dipole resonator consisting of a sphere with
a uniform magnetic field on its interior, as discussed in the
previous section. If the relative permeability is set to 1, the
medium is homogeneous everywhere. In that case, according
to Equation 79, the dipole volume of the magnetic resonator
becomes 3Ve.

In general, it can be shown that the dipole volume of any
current distribution must satisfy the following constraint when
embedded in a medium which is homogeneous everywhere:

υm ≤ 3Ve (80)

Constraint 80 may be proven by calculus of variations. The
energy may be minimized over all possible current distribu-
tions completely enclosed by a sphere of volume, Ve, and
constrained to have a fixed dipole moment, ~m. Out of all
such current distributions, the lowest energy is achieved by the
current distribution which creates a uniform magnetic field on
the interior of the sphere.

The same calculus of variations may be applied to the case
of an electric dipole resonator in a homogeneous medium.
In that case, the lowest energy is achieved by the charge
distribution which creates a uniform electric field on the
interior of the sphere. However, different boundary conditions
cause the interior field to contain less energy, giving the
following upper bound on dipole volume for an electric dipole
resonator in a medium which is homogeneous everywhere:

υp ≤ 6Ve (81)

Note that these upper limits on dipole volume provide a lower
bound on the quality factor due to radiation described by
Equation 64.


